

Silicon Carbide Multi-Chip Power Modules (MCPMs) for Plug-In Hybrid Electric Vehicles (PHEVs)

Summit Spotlight March 2, 2011

Program Manager: Dr. Ty McNutt Principal Investigator: Dr. Alex Lostetter

Arkansas Power Electronics International, Inc. 535 W Research Center Blvd. Suite 209

Fayetteville, AR 72701 Office: 479-443-5759

www.apei.net

Motivation for Highly-integrated, Silicon Carbide-Based PHEV Charger

Specification	Today's Silicon Technology	Silicon Carbide (SiC) Technology
Semiconductor Temperature Limit	150 C	250 C
Heat Sinking	High volume & mass	Limited volume & mass or elimination
Switching Frequency	Low. Limits miniaturization	High. Enables miniaturization
Grid-tie Capability	No	Yes (Bi-directional)

ADEPT Program - Development of a 5 kW Plug-In Charger for Toyota Prius

Goals

- Develop a Mult-Chip Power Module (MCPM) for >500 kHz Operation
- Develop high-speed 1200V, 20A SiC MOSFET with isolated, integrated SiC gate drive
- Topology with >94% efficiency, > 5kW/kg, > 100W/in3
- Small, lightweight, few materials, low cost
- Integrate into Prius vehicle and demonstrate operation

SiC Power MOSFET Must Be Optimized For High Frequency

- Program Challenge: Power MOSFET process not optimized for Integrated Circuit (IC) implementation
 - Limited options in design layers
- Power MOSFET On-Resistance Targets 33% Reduction
 - MOS channel resistance,
 Spreading resistance are dominant components

Drain

First-of-Kind Integrated, Isolated Gate Drive/Power **MOSFET for Ultra-High Switching Frequencies**

- Integrated Gate Drive Compatible with SiC Power MOSFET Process
 - Gate driver design will be implemented using only nMOS
- An accurate CAD environment must be developed for IC integration

Process Characterization

Maximum

PHEV Charger Development Uses Silicon Carbide Components & Proven MCPM Technology

- Key Attributes
 - SiC power MOSFETs
 - SiC gate drive ICs
 - Si high temperature controls
 - High temperature packaging (>200 °C)
 - High frequency & low parasitics
 - High temperature die attach
 - High temperature passives

Low-Cost, Highly-Integrated SiC Module Will Be Demonstrated in a Toyota PHEV

- A Toyota Plug-In HEV Prius is being delivered for insertion of SiC-based 5 kW Charger unit
 - 10x smaller
 - 10x lighter
 - Lower cost

